The Possible Impact of Vaccination for Seasonal Influenza on Emergence of Pandemic Influenza via Reassortment
نویسندگان
چکیده
BACKGROUND One pathway through which pandemic influenza strains might emerge is reassortment from coinfection of different influenza A viruses. Seasonal influenza vaccines are designed to target the circulating strains, which intuitively decreases the prevalence of coinfection and the chance of pandemic emergence due to reassortment. However, individual-based analyses on 2009 pandemic influenza show that the previous seasonal vaccination may increase the risk of pandemic A(H1N1) pdm09 infection. In view of pandemic influenza preparedness, it is essential to understand the overall effect of seasonal vaccination on pandemic emergence via reassortment. METHODS AND FINDINGS In a previous study we applied a population dynamics approach to investigate the effect of infection-induced cross-immunity on reducing such a pandemic risk. Here the model was extended by incorporating vaccination for seasonal influenza to assess its potential role on the pandemic emergence via reassortment and its effect in protecting humans if a pandemic does emerge. The vaccination is assumed to protect against the target strains but only partially against other strains. We find that a universal seasonal vaccine that provides full-spectrum cross-immunity substantially reduces the opportunity of pandemic emergence. However, our results show that such effectiveness depends on the strength of infection-induced cross-immunity against any novel reassortant strain. If it is weak, the vaccine that induces cross-immunity strongly against non-target resident strains but weakly against novel reassortant strains, can further depress the pandemic emergence; if it is very strong, the same kind of vaccine increases the probability of pandemic emergence. CONCLUSIONS Two types of vaccines are available: inactivated and live attenuated, only live attenuated vaccines can induce heterosubtypic immunity. Current vaccines are effective in controlling circulating strains; they cannot always help restrain pandemic emergence because of the uncertainty of the oncoming reassortant strains, however. This urges the development of universal vaccines for prevention of pandemic influenza.
منابع مشابه
Influenza A/H1N1 in 2009: a pandemic in evolution.
Influenza has demonstrated its capacity to surprise with the emergence of a novel influenza A/H1N1 virus in North America. Air travel has a facilitated rapid inter continental spread of the virus, threatening the next pandemic. Current seasonal influenza A/H1N1, A/H3N2 and B viruses infect approximately 5–15% of the world’s population each year, and are responsible for an estimated 500,000 exce...
متن کاملA Narrative Review of Influenza: A Seasonal and Pandemic Disease
Influenza is an acute respiratory disease caused by the influenza A or B virus. It often occurs in outbreaks and epidemics worldwide, mainly during the winter season. Significant numbers of influenza virus particles are present in the respiratory secretions of infected persons, so infection can be transmitted by sneezing and coughing via large particle droplets. The mean duration of influenza v...
متن کاملDetection of Seasonal Influenza H1N1 and H3N2 Viruses using RT-PCR Assay during 2009 Flu Pandemic in Golestan Province
Abstract Background and Objective: The emergence of a novel H1N1influenza A virus of animal origin with transmissibility from human to human poses pandemic concern. Current subtypes of Seasonal influenza A viruses spread in human are influenza A H1N1 influenza A H3N2 and influenza type B viruses. The aim of this study was to determine current strains of the H3N2 and new H1N1 subtypes of influe...
متن کاملAmantadine-Resistant among Seasonal H1N1 and 2009 Pandemic Isolated of Influenza A Viruses in Iran
Background and Aims: Influenza A viruses are important pathogens for humans especially in pandemic episodes. Two adamantane derivates, amantadine and rimantadine, are used for prophylaxis and treatment of influenza A virus infections. However, single amino acid substitutions in the M2 transmembrane domain which lead to amantadine resistance of these viruses occur at residues 26, 27, 30, 31 or 3...
متن کاملNew Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription
Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...
متن کامل